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Protogalactic SMBH

by Turbulen
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Two possible formation routes

e Accretion

e For Pop lll stellar masses 40 Mo< M <100 Mg or > 260 Mo, the star
directly collapses into a BH.

e However, the intense radiation during the main sequence creates an under
dense medium of 1 cm and most of the gas is expelled from the cloud.

¢ Monolithic collapse

e Once the gas can cool efficiently (i.e., tcool < tayn), the cloud proceeds to
quasistatically collapse.

* The details of the resulting BH and galaxy depends on the initial
configuration of various quantities, such as angular momentum,
turbulence, metallicity, etc.
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Computational Setup

e Adaptive Mesh Refinement

e 41 |evels of refinement
based on baryonic and DM

denSity and Jeans Iength' fin AR AR AR

® Resulting in a dynamic
range of 10’4 in length
scales.

e 22 179 grids

e 74 000 000 (4203) unique
cells

¢ 0.01 Re maximal resolution

e 1.5 comoving Mpc box




Implications on Galaxy Formation

e We see no initial disk formation but a massive (10° Mo) turbulent central
object forming.

e The feedback from this central source, whether it be a SMBH or starburst, will
have a grand impact on the subsequent large-scale disk.

* There exists enough low angular momentum material to collapse to the inner
parsec.

e Then gravitational instabilities transport angular momentum outwards, and
supersonic turbulence can dissipate additional energy.

e However in another realization, turbulent heating slows the collapse and
might result in a starburst instead.

® The processes seen in our simulations are relevant for theories that postulate
SMBH formation from the direct collapse of baryons.
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Currently Near Future

1. Radiative transfer from primordial 1. Radiative accreting particles
stars (~20). The first primordial

starforms at z = 31 2. Population |l star formation

2. Tracking of SNe metal ejecta 3. Seed BH tracking and accretion

3. Molecular hydrogen cooling 4. Magnetic fields (Ideal MHD)

4. Accreting (sink) particles at the

- . .
resolution limit Form a high redshift dwarf galaxy
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Summary

We follow the collapse of a turbulent, gravitationally unstable 10° Mo core in a 3 x 107 Mo halo
at z=17. In this realization, we expect a SMBH to form.

Gravitational instabilities and supersonic turbulence drive the collapse to smaller scales without
becoming rotationally supported.

The amount of turbulence may influence the final state (i.e. SMBH or starburst) of the central
object.

The feedback from a central BH will undoubtedly affect subsequent star formation in the “large-
scale” (50 pc) disk.

With only atomic cooling, one finds no fragmentation to multiple objects down to sub-solar
scales. Does this ever occur in nature?

Neglecting H2 and the Pop Il progenitors is what allows the BH simulation. Nature may never
do this. However, it clearly is a wonderful testbed for the idea of turbulent collapse. It also shows
what standard simulations of galaxy formation should find.

For the next step, we are currently simulating the primordial star formation and its effect on the
first galaxies.




